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ABSTRACT 

What do investor utility functions look like? We show how returns on a stock and prices of call 
options written on that stock can be used jointly to recover utility of wealth function of the marginal 
investor in the stock. We study whether non-standard preferences have an impact sufficiently large 
that it is present in the stock prices. Using options on the stocks in the Dow Jones Index, we show 
support for non-concave utility functions with reference points proposed by Kahneman and Tversky, 
Friedman and Savage, and Markowitz. The evidence for Kahneman and Tversky Prospect Theory 
value function, and Friedman and Savage and Markowitz utility functions is much stronger than the 
support for the standard concave utility function. Together the utility functions with convex regions 
and with reference points account for 80% of the market capitalization of the sample stocks. This is 
the first study to report findings of these utility functions using the prices of individual stocks (non-
experimental data). We also investigate a closely related question of whether different assets reflect 
different risk preferences. We find evidence showing that different stocks reflect different types of 
investor utility function.  
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Introduction 

Rabin and Thaler (2001) argue that the evidence against the expected utility 

maximization paradigm based on a classical risk-averse utility function is overwhelming. 

Standard models have difficulty explaining the first moment (equity premium) and the 

second moment (excess volatility) of asset returns.1 Rational models are also under increasing 

attack after the boom in U.S. stock prices in the late 1990’s, often referred to as one of the 

biggest bubbles in financial history. Many financial economists, in the attempt to understand 

price behavior, have focused on behavioral explanations.2 Based on this growing amount of 

evidence, Rabin and Thaler conclude that we, as financial economists, need to “concentrate 

our energies on the important task of developing better descriptive models of choice under 

uncertainty.”  

A better understanding of investor preferences will help explain the behavior of risk 

premia both in the cross-section and in the time series. But what utility function should we 

use? 

In this paper we let the data speak. We use market data for each individual stock in 

the Dow Jones Industrial Average to determine the shape of the investor’s utility function for 

that stock. The recovered shapes are then compared to the previously hypothesized utility 

functions. We show that asset prices reflect utility functions that contain risk-averse and risk-

seeking regions. The support for utility functions with convex regions and with reference 

                                                 
1 See Constantinides (2002) for a detailed discussion. Constantinides (2002) concludes that the evidence does 
not support the case for abandoning the rational economic model. Benartzi and Thaler (1995) review the 
evidence regarding the equity premium puzzle—the observation by Mehra and Prescott (1985) that the 
combination of a high equity premium, a low risk-free rate, and a smooth consumption is difficult to explain 
with plausible levels of investor risk aversion. 
2 Shiller (2000) attributes the boom in technology stocks to irrational exuberance. Several authors show how 
speculative bubbles may be caused by investor overconfidence: Scheinkman and Xiong (2003), Hong, 
Scheinkman and Wie (2004), and Sornette and Zhou (2003).  
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points—as postulated by Kahneman and Tversky, Friedman and Savage, and Markowitz—is 

much stronger that the evidence in favor of the standard uniformly risk-averse preferences. 

This is a significant finding. Kahneman and Tversky, Friedman and Savage, and 

Markowitz developed their utility functions to explain very general patterns in human 

behavior. Their purpose was not to explain specific well-documented patterns in asset prices. 

However, we find that these preferences are reflected in the prices of Dow Jones stocks. 

Individual behavior is not averaged out or arbitraged away. In addition, the evidence is 

strong. These three types of utility functions account for 80% of the market capitalization of 

the sample stocks. 

Modifications to the standard concave utility function are a formal way of explaining 

individual behavior within a decision theory under risk. The modifications date back to the 

work of Friedman and Savage (1948) who, in order to construct a rational explanation for 

the coexistence of gambling and owning insurance in human behavior, propose that an 

individual’s utility of wealth function is composed of two (strictly) concave segments 

separated by a (strictly) convex segment (Figure 1). Concavity implies risk-averse behavior 

and convexity implies risk-seeking behavior. For investors with such a utility function 

simultaneous purchase of insurance and lotteries is fully rational. Markowitz (1952) argues 

that the Friedman and Savage utility function should be modified so that the inflection point 

where the concave region turns into the convex region is located exactly at the individual's 

current wealth (Figure 2), thereby introducing a reference point into the utility function. 

Perhaps the most well-known class of value function is the prospect theory S-shaped 

function suggested by Kahneman and Tversky (1979, 1992). Based on their experimental 

results, they suggest that the value function is convex in the domain of losses (below the 

current wealth level) and concave in the domain of gains (above the current wealth). This 
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function changes from risk-seeking to risk aversion at the current level of wealth. The 

function captures loss aversion, the empirically demonstrated tendency for people to weight 

losses significantly more heavily than gains.  

In the neighborhood of the current wealth, the utility functions proposed by 

Kahneman and Tversky and by Markowitz have the opposite behavior. The former 

describes investors as being risk-seeking over losses and risk-averse over gains, while the 

latter describes investors as being risk-averse over losses and risk-seeking over gains. For 

both functions, the convex regions are consistent with risk-seeking behavior, a feature 

absent from classic models.3 Both functions explicitly postulate the existence of a reference 

point—the current wealth. 

More recently, non-standard utility functions have been used to explain asset pricing 

anomalies.4 Bernartzi and Thaler (1995) use Kahneman and Tversky’s (1979) theory of loss 

aversion, combined with a short evaluation period of individuals (myopia) to explain the equity 

premium puzzle at the aggregate stock market level.5 Loss aversion refers to the tendency of 

individuals to be more sensitive to reductions in their levels of wealth than to increases. 

Estimates of loss aversion are typically close to 2.0: losses hurt roughly twice as much as 

gains yield pleasure.6 Bernartzi and Thaler (1995) analyze the portfolio problem of a loss 

averse investor who allocates wealth between T-bills and the stock market. They find that 

                                                 
3 Several authors have shown how Friedman-Savage utility can arise within a fully rational utility maximization 
framework. We review the literature on convexity in the theory of choice in the Appendix, where we also 
discuss that convexities in individual utility functions do not necessarily contradict the capital market 
equilibrium, or even a large aggregate risk premium. 
4 The new theories are driven by the desire to explain the known patterns in asset returns from first principles. 
Theoretical models that are based on modifying standard preference structures include Constantinides (1990), 
Barberis, Huang, and Santos (2001), and Campbell and Cochrane (1999). Grinblatt and Han (2004) develop a 
pricing model in which a group of investors is subject to Prospect Theory and Mental Accounting behavior. 
Shefrin and Statman (2000) build a behavioral portfolio theory (BPT). The optimal portfolios of BPT investors 
resemble combinations of bonds and lottery tickets, consistent with Friedman and Savage’s (1948) observation. 
5 Thaler, Tversky, Kahneman, and Schwartz (1997) present experimental evidence on myopic loss aversion. 
6 These estimates come both from risky choice (Tversky and Kahneman 1992) and from riskless choice 
(Kahneman, Knetsch, and Thaler 1990). 
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the investor is reluctant to allocate much to stocks, even if the expected return on the stock 

market is set equal to its high historical value. The size of the equity premium is consistent 

with the previously estimated parameters of prospect theory. Coval and Shumway (2005) 

find that market makers exhibit loss aversion. Market makers take above average risk after 

experiencing losses earlier that same day. This risk-seeking behavior has a short-term affect 

on prices. Barberis and Huang (2004) use Kahneman and Tversky’s (1992) cumulative 

prospect theory to explain the underpricing of IPOs. In a theory developed by Brunnermeier 

and Parker (2005) agents can be risk-loving when investing in assets with skewed payoffs 

and at the same time risk averse when investing in non-skewed assets.  

The challenge remains to show that non-standard utility functions have an impact on 

asset prices sufficiently large that it can be detected empirically. On the one hand, risk-

seeking, loss aversion, and the existence of a point of reference all may affect prices—and 

should be detected in prices—because they affect saving and investment behavior. For 

example, loss aversion affects savings because once households get used to a particular level 

of disposable income, they tend to view reductions in that level as a loss (Thaler and 

Benartzi 2004). On the other hand, there are several reasons why asset prices may not reflect 

biases. It may be the case that behavioral biases of individual investors vanish in the 

aggregate. Different investors may have different biases. In equilibrium when there are 

sufficiently many investors these biases may off-set and cancel each other out. The impact of 

behavioral biases on asset prices may also be difficult to detect because rational arbitrageurs 

may be at work, arbitraging the biases away. Coval and Shumway (2005), for example, find 

that prices set by loss averse individuals are reversed more quickly than prices set by other 

unbiased traders. In this case it appears that the market is able to distinguish the risk-seeking 
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behavior. However, if the rational arbitrage forces have limits then prices will reflect biases.7 

There is another conceptual difficulty recently discovered by several researchers. 

Surprisingly, theories based on very different assumptions may lead to remarkably similar 

results. For example, mean-variance analysis (MV) is based on the assumption of utility 

maximization by a risk-averse investor. In contrast, in Prospect Theory (PT) risk aversion 

does not globally prevail – individuals are risk-seeking regarding losses. Also, PT investors 

make decisions based on change of wealth rather than the total wealth. Levy and Levy (2004) 

show that, counter-intuitively, when diversification between assets is allowed, the MV and 

PT-efficient sets almost coincide. If, as the authors conclude, one may employ the MV 

optimization algorithm to construct PT-efficient portfolios, then portfolio composition, 

asset demand, and resulting asset prices may look very similar in PT and MV cases. This may 

make it difficult to detect the impact of PT preferences using stock prices.  

Investor risk preferences are at the center of the debate between rational and 

behavioral economists. These preferences are the benchmark which researchers use to 

distinguish fully rational behavior from various behavioral biases. Yet, the empirical studies 

of the shape of investor preferences toward risk are rare. Most closely related to our work is 

the study by Post and Levy (2005). The authors use various stochastic dominance criteria 

that account for (local) risk seeking. They study the efficiency of the market portfolio relative 

to benchmark portfolios formed on market capitalization, book-to-market-value, and price 

momentum. They find some evidence supporting utility functions with risk aversion for 

losses and risk seeking for gains in aggregate stock returns.  

We take a step forward in this line of research by using individual stock market data 

to determine the shape of the investor’s utility function. We estimate risk aversion as a 

                                                 
7 See, e.g. DeLong et al. (1990), Shleifer and Vishny (1997), and Daniel et al. (2001). 
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function of wealth using option and stock prices for all stocks comprising the Dow Jones 

Industrial Index.8  Using the Arrow-Pratt definition of risk aversion, we are then able to 

determine the utility function implied by risk aversion.  The focus of this paper is on non-

experimental measurement of utility. Our approach is flexible. We do not assume any 

particular function and we do not rely on a specific option pricing model when working with 

the options data.9 This is the first paper to show support for several different well-known 

utility functions in the prices of individual stocks and option contracts written on these 

stocks. 

By working with individual stocks we can study whether prices of different securities 

reflect different risk preferences. If the same marginal investor (a representative investor) 

prices all assets in the economy and this investor has a canonical risk averse utility function, 

then we should expect the same risk aversion estimates for all stocks. Our results, however, 

indicate support for a variety of utility functions. We find evidence to support the existence 

of Constant Absolute Risk Aversion (CARA), Constant Relative Risk Aversion (CRRA), 

Friedman and Savage, Markowitz, and Kahneman and Tversky utility functions. This is the 

first study to find evidence supporting Markowitz and Friedman-Savage utility functions in 

stock prices. Even more striking is the existence of seemingly opposite behavior. Kahneman-

Tversky’s S-shaped utility function and Markowitz utility function are complete opposites 

                                                 
8 We discuss the modifications we make to the methodologies of Jackwerth (2000) and Bliss and Panigirtzoglou 
(2004) later in the paper. 
9 The method allows us to examine the shape of the investor utility function. One more issue can be addressed 

with this approach. In the canonical asset pricing theory the same investor – the marginal investor – sets the 

prices of all stocks. If there is a clientele effect where different types of investors purchase different securities, 

then it may be the case that prices of different stocks reflect a variety of preferences. Because we do not rely on 

a specific option pricing model, we do not need to explain the behavior of option prices within a model. In 

other words, we are not “fitting a smile.”  
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around the current wealth level. The first exhibits risk-loving behavior over losses and risk-

aversion over gains, whereas the latter describes risk aversion for the region of losses 

(immediately below current wealth) and risk-loving for the region of gains (immediately 

above current wealth). To illustrate our findings, Figure 3 shows risk aversion (as a function 

of wealth) of Walt Disney (DIS) investors, a company with capitalization in excess of $47 

Billion and one of the stocks in the Dow Jones Industrial Average. Risk aversion is positive over 

losses then changes to negative over gains. This is consistent with the Markowitz utility 

function. 

The total market capitalization of the firms in the sample at the end of the sample 

period (December 31, 2003) equals $3,882.5 billion. Of the 41 firms considered, thirty-four 

firms have risk aversion profile that includes both risk averse and risk-seeking regions, 

consistent with the hypotheses of Kahneman and Tversky, Friedman and Savage, and 

Markowitz. The total market capitalization of these companies equals $3,071 billion or 80% 

of the sample total. The remaining 20% of the market capitalization are distributed among 

different classes of utility functions as follows. Two firms with total capitalization of $144.3 

billion (3.7% of the total) fit the profile of CARA preferences and one firm with the market 

capitalization of $44.6 billion is classified as CRRA. The risk aversion profiles for four firms 

do not fit in any of the above categories. These are the firms that we assign to the “other” 

category. Their combined market capitalization is $622.7 billion, or 16% of the total. 

These findings have several implications to asset pricing research. Friedman-Savage, 

Markowitz, and Kahneman-Tversky utility functions were developed to explain individual 

behavior. By finding patterns of risk aversion consistent with these functions, we show that 

individual preferences toward risk may have an impact on asset prices. There is another 

dimension to our findings. We show that different utility functions characterize marginal 
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investor for different assets (stocks). We show this with a new methodology and in a new 

statistical setting. Lastly, the evidence supporting different marginal investors for different 

securities challenges the representative agent paradigm. The evidence is consistent with 

investor behavior where stocks with different characteristics attract different types of 

investors. This notion is consistent, for example, with style investing (Barberis and Shleifer 

2003). In the style investing paradigm investors classify stocks into various styles (for 

example, value stocks and growth stocks) and take the style classification into account when 

allocating funds. If style investing is taking place then investors with different preferences 

will gravitate to their preferred styles, changing the demand and affecting the prices. It then 

may be the case that prices of assets that are classified into different styles will reflect the 

differences in preferences. 

Several authors have pointed out that it is difficult, from observing stock prices 

alone, to differentiate competing theories that attempt to explain price patterns. This 

difficulty is the central argument in Brav and Heaton (2002). The authors study two 

competing theories of financial anomalies: “behavioral” theories built on investor 

irrationality, and “rational structural uncertainty” theories built on incomplete information 

about the structure of the economic environment. The authors conclude that although the 

theories relax opposite assumptions of the rational expectations ideal, their mathematical and 

predictive similarities make them difficult to distinguish. We show that by using options, it is, 

to some extent, possible to overcome these difficulties and to recover investor preferences 

toward risk. We now develop the methodology more formally. 
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Methodology 

We show how returns on an asset (a stock) and prices of options written on that 

asset can be jointly used to recover utility function of investors in the stock. We develop the 

methodology in this section. 

The method for recovering utility functions from observed asset prices consists of 

two steps. First, we use returns on a stock and prices of options on that stock to estimate the 

Arrow-Pratt coefficient of risk aversion. Second, we use the estimated coefficient of risk 

aversion to recover the utility of wealth function.  

 We discuss the second step first. We show that if the coefficient of risk aversion as a 

function of wealth is known, then it is possible to recover the utility of wealth function. Let 

( )wu  be a twice continuously differentiable utility of wealth function. The Arrow-Pratt 

absolute risk aversion is defined as 

( ) ( )
( ) .wu
wuwRA

′
′′

−≡       (1) 

Relative risk aversion is defined as ( ) ( )wRAwwRR ⋅≡ . Suppose we have constructed an 

estimate of the risk aversion as a function of wealth ( ) ( )wRAwa ≈ˆ . Then, using the 

definition of risk aversion, the utility function is a solution to the ordinary differential 

equation, 

( )
( ) ( ).ˆ wa
wu
wu

=
′
′′

−       (2) 

 For example if the estimated risk aversion coefficient is a constant, ( ) Kwa =ˆ , then 

the differential equation becomes 

( )
( ) .K
wu
wu

=
′
′′

−  
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The solution is the familiar negative exponential utility function (with constant absolute risk 

aversion, or CARA), 

( ) ,2
1 Ce

a
Cwu wa +−= ⋅−  

where ℜ∈21,CC  are the constants of integration. 

 Another familiar example is the power utility function (CRRA). If the estimated 

coefficient of absolute risk aversion is a function of wealth, ( ) ( ) wwa /1ˆ γ−= , then the 

relative risk aversion is constant 

( ) ( ) γ−=⋅= 1ˆˆ wawwR . 

The ODE in this case is 

( )
( ) wwu
wu γ−

=
′
′′

−
1  

and the solution is the power utility function 

( ) ,21 CWCwu +=
γ

γ

 

where ℜ∈21,CC  are the constants of integration. 

The S-shaped Prospect Theory value function suggested by Kahneman and Tversky 

(1979, 1992) is one of the most well-known and most investigated in finance research. Utility 

is defined over gains and losses. This function is characterized by one inflection point 

located at the individual’s current wealth. The individual is risk seeking for losses (the 

function is convex below the inflection point) and is risk averse for gains (the function is 

concave above the inflection point). Specifically, Kahneman and Tversky propose a value 

function of the following form: 

( )
( )⎩

⎨
⎧

<−−
>

=
0
0,

xx
xx

xv β

α

λ
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They estimate parameter values as 88.0== βα  and .25.2=λ  

To see that this function implies risk-seeking in the domain of losses, 0<x , compute 

the first and the second derivatives in the domain of losses. Indeed, ( ) ( ) 1−−= ββλ xdxxdv  

and ( ) ( ) 222 1 −−−−= βλββ xdxxd . By definition of risk aversion, ( ) ( )xuxuRA ′′′−=  and 

in this case ( ) xRA β−= 1 , which is negative (indicating risk-seeking) for 1<β  and 0<x . 

Let 0/WWw =  be normalized wealth ( 0W  is the current wealth). Suppose that a 

researcher observes an empirical risk aversion function that is negative below the initial 

wealth and changes sign at the initial wealth to become positive above it, 

( )
⎪
⎩

⎪
⎨

⎧

>>
==
<<

=
1,0
1,0
,1,0

ˆ
wif
wif
wif

wa  

This finding is evidence in support of Kahneman and Tversky value function. To recover 

the utility function we can solve ODE (2) numerically. Since risk aversion is estimated from 

a data sample, the statements about the sign of the risk aversion coefficient and about the 

equality with zero are statistical statements. To claim support for Kahneman-Tversky utility 

we must statistically show that ( ) 0ˆ <wa  in a region below 1=w , ( ) 0ˆ =wa  at 1=w , and 

( ) 0ˆ >wa  in the region above 1=w . 

 The Friedman-Savage utility function also contains both concave and convex 

regions. Such a utility function can be described by a convex, quadratic empirical risk 

aversion function ( )wâ  with two positive roots (this is a sufficient, but not necessary 

condition for Friedman-Savage utility).10 The utility function corresponding to such risk 

                                                 
10 An example of such risk aversion function, estimated for Chevron (CHV) is shown in Figure 4. The pattern 
will be verified by statistical tests. 



 14

aversion profile is characterized by two concave regions separated by a convex region. 

Suppose the estimated risk aversion is a quadratic function, 

( ) CBwAwwa ++= 2ˆ , 

then the utility function ( )wu  is determined from the ordinary differential equation, 

( )
( ) CBwAw
wu
wu

++=
′
′′

− 2 . 

The solution to this equation in general form is given by 

( ) ∫ ⎥
⎦

⎤
⎢
⎣

⎡
−−−+=

w

dtCtBtAtExpCCwu
ζ

,
23

23

12  

where ζ is a dummy variable, and ℜ∈21,CC .  

Markowitz (1952) suggests that the Friedman and Savage utility function should be 

modified so that the inflection point where the concave region turns into the convex region 

is located exactly at the current wealth. Markowitz utility function has three inflection points 

(Figure 2). The middle inflection point is defined to be at the current level of wealth.  

 The following pattern observed in the empirical risk aversion is consistent with 

Markowitz utility function. Empirical risk aversion is first negative, then positive immediately 

below the initial wealth, and changes to negative at initial wealth,  

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<>
<<<

==
<<>

<<

=

wEif
Ewif

wif
wDif
Dwif

wa

,0
1,0

1,0
1,0

,0

ˆ , 

where D<1 is the first inflection point (below current wealth), and E>1 is the third 

inflection point above the current wealth. An empirical risk aversion function with this shape 

is evidence consistent with Markowitz utility function. To recover the utility function, we can 
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solve ODE (2) numerically. Since risk aversion is computed from a data sample, the 

statements about the sign of the risk aversion coefficient and about the equality with zero are 

statistical statements. The statistical hypotheses are whether ( ) 0ˆ <wa  in a region below 

some D<1, positive in the region between D and 1=w ,  ( ) 01ˆ =a , negative in the region 

between 1 and E, and ( ) 0ˆ >wa  in the region above the last inflection point E. One caveat. 

Markowitz utility function has a complex shape. Neither Markowitz nor Friedman and 

Savage state where the inflection points are located with the exception of Markowitz utility 

changing from concave to convex at the current wealth level. Therefore, we may not have 

enough data to recover this complex shape in full. We observe only a section of the risk 

aversion function, away from very large gains or losses. The Markowitz function, however, 

has a distinct shape near the current wealth. By observing risk aversion near 1=w , we can 

capture a very interesting and unique characteristic of this utility function. 

In the neighborhood of the current wealth, the utility functions proposed by 

Kahneman and Tversky and by Markowitz have the opposite behavior. The first changes 

from convex to concave, the second changes from concave to convex. This gives an 

opportunity to test whether the data support one or the other. If, in the neighborhood of 

current wealth, estimated risk aversion changes from negative to positive, then this is 

evidence in favor of Kahneman and Tversky. If, on the other hand, risk aversion changes 

from positive to negative, then the data supports Markowitz utility function. 
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To summarize, we will study the following utility functions: 

1. Constant Absolute Risk Aversion: The function is concave throughout. 

Estimated absolute risk aversion coefficient is positive and independent of 

wealth. 

 

2. Constant Relative Risk Aversion: The function is concave throughout. The 

estimated coefficient of absolute risk aversion is positive and is a function of 

wealth, ( ) ( ) wwa /1ˆ γ−= . 

 

3. Kahneman and Tversky. The utility function is convex in the domain of losses 

(below current wealth) and concave in the domain of gains (above current 

wealth). The estimated coefficient of risk aversion is negative below current 

wealth, equals zero at current wealth, and then positive above current wealth. 

 

4. Friedman and Savage Utility Function. The function is concave, convex, and 

then concave again. Estimated coefficient of risk aversion is positive, negative, 

and then positive. 

 

5. Markowitz Utility Function. The function consists of four regions: convex, 

concave, convex, and concave. In the neighborhood of the current wealth the 

function changes shape from concave to convex. The estimated coefficient of 

risk aversion is positive (immediately) below current wealth, equals zero at 

current wealth, and is then negative immediately above current wealth. 
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We have established a connection between the coefficient of risk aversion as a 

function of wealth and the shapes of utility functions proposed by several researchers. We 

have shown that if risk aversion is estimated than we can construct an estimate of the utility 

function by solving a second order ODE. We now discuss how the marginal investor’s risk 

aversion function for a particular stock can be estimated from the data on stock returns and 

options written on the stock. 

 

Recovering Risk Aversion 

 An estimate of risk aversion can be obtained from asset prices. There is a 

relationship between the risk-neutral probability distribution of returns on a stock  

i , ( )TiSP , , subjective (true) probability distribution ( )TiSQ , , and investor risk aversion. The 

relation is,11 

,
)(
)(

)(
)(

)(
)(

,

,

,

,

,

,

Ti

Ti

Ti

Ti

Ti

Ti

SP
SP

SQ
SQ

SU
SU

AversionRisk
′

−
′

=
′
′′

−=  

where ( )•U  is the investor’s time–separable utility of wealth. Therefore, knowing the 

subjective distribution and the risk neutral distribution is sufficient to find risk aversion. 

 To determine the two distributions, we combine the methodologies of Bliss and 

Panigirtzoglou (2002, 2004) and Jackwerth (2000). Using option prices for a particular 

underlying stock, we estimate the risk-neutral probability density function (PDF) according 

to Bliss and Panigirtzoglou (2002, 2004). We then use five years of past monthly stock 

returns to determine a risk-adjusted (or, subjective) PDF using a nonparametric kernel 

density estimator similar to the one used in Jackwerth (2000).  Risk aversion is the 

adjustment required to transform the risk-neutral PDF into the risk-adjusted PDF. Using 

                                                 
11 See, for example, discussion in Jackwerth (2000). 
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this method, the risk aversion coefficient can be estimated for every trading day for any asset 

for which option prices are available. 

 

Risk-neutral probability distribution 

 One method for finding the monthly risk-neutral distribution is proposed in 

Jackwerth and Rubinstein (1996). The method is based on a search for the smoothest risk-

neutral distribution, which at the same time explains the option prices. The trade-off 

between the two contradicting goals is exogenously specified. Three problems arise with this 

approach (Jackwerth 2000). First, matching the option prices by minimizing the squared 

error puts more weight on in-the-money compared to out-of-the-money options. Second, 

the Jackwerth-Rubinstein method does not account for the fact that at-the-money option 

prices vary less throughout the day than away-from-the-money options. Third, the 

Jackwerth-Rubinstein method uses as a measure of smoothness the integral of squared 

curvature of the probability distribution. 

 We use a different approach. We know from option pricing theory that the risk-

neutral PDF is embedded in option prices.  Let T be the expiration date of an option. The 

PDF, f(Si,T), for the underlying asset i at time T has been shown to be related to the price of 

the European call option, C(Si,t, K, t), by Breeden and Litzenberger (1978).  Here, K is the 

option strike price and Si,t is the price of underlying i at time t where t<T.  This relationship 

is  
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For each underlying asset, i , and for each expiration date, however, the function 

( )tKSC ti ,,,  is unknown and only a limited set of call options with different strike prices 



 19

exist.  Therefore, in order to calculate the second derivative we estimate a smoothing 

function using option prices with different strike prices but with the same expiration dates. 

Instead of estimating such a smoothing function in option price/strike price space, 

we follow Bliss and Panigirtzoglou (2002, 2004) by first mapping each option price/strike 

price pair to the corresponding implied volatility/delta. We fit a curve connecting the 

implied volatility/delta pairs using a weighted cubic spline where the option’s vega is used as 

the weight. We take 300 points along the curve and transform them back to the option 

price/strike price space. We thus obtain a smoothed price function, which we numerically 

differentiate to produce the estimated PDF. Bliss and Panigirtzoglou (2002) find that this 

method of estimating the implied volatility smile and the implied PDF is “remarkably free of 

computational problems.” 

A weighted natural spline is used to fit a smoothing function to the transformed raw 

data. The natural spline minimizes the following function: 

( )( ) ( ) ,;'',min 2
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where we omit the company-identifying index, i , for brevity; jIV  is the implied volatility of 

the thj  option on stock i  in the cross section; ( )θ,jIV ∆  is the fitted implied volatility 

which is a function of the thj  option delta, j∆ , and the parameters, θ , that define the 

smoothing spline, ( )θ;xg ; and jw  is the weight applied to the thj  option’s squared fitted 

implied volatility error. Following Bliss and Panigirtzoglou (2004), in this paper we use the 

option vegas, σ∂∂≡ /Cv , to weight the observations. The parameter λ  is a smoothing 

parameter that controls the tradeoff between goodness-of-fit of the fitted spline and its 
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smoothness measured by the integrated squared second derivative of the implied volatility 

function.  

From the estimated cubic spline curve, we take 300 equally spaced deltas and their 

corresponding implied volatilities and transform them back to option price/strike price 

space using the Black-Scholes option pricing formula that accounts for dividends paid on the 

stock. However, although the deltas are equally spaced, the strike prices that are obtained 

after the conversion are not. We use a cubic spline for a second time to fit a curve 

connecting the 300 unequally spaced call price/strike price pairs. This allows us to choose 

300 equally spaced strike prices with their corresponding call prices. Finally, we use finite 

differences to estimate the second derivative of the call price with respect to the strike price. 

This yields the risk-neutral PDF. This procedure does not depend on a specific option 

pricing model (Bliss and Panigirtzoglou 2004). 

 

Subjective probability distributions 

 We use a kernel density estimator to estimate the subjective (risk-adjusted) 

probability density functions. Similar procedure is used in Jackwerth (2000).12 We use the 

most recent 60 months of stock return data to estimate the risk-adjusted distribution. To 

find estimates for January 1996, we use monthly return data from January 1991 to December 

1995. All information used in the calculation is part of the investors’ information set. Other 

windows were considered but results were highly correlated. For example, we tried a window 

of past returns with a lag of one year or six month, and we tried using 72 months of returns 

instead of 60. Varying our initial choices does not change the results. 

                                                 
12 This is different from Bliss and Panigirtzoglou (2004) who first hypothesize a utility function (power and 
exponential utility) for the investor and then use this function to convert the risk-neutral PDF to the subjective 
PDF. We do not follow this approach because we do not hypothesize a utility function. 
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 We calculate monthly non-overlapping returns from our 5-year sample and compute 

the kernel density with a Gaussian kernel. The bandwidth 

[ ] 5/1)3/(4ˆ nh σ= , 

where h is the kernel bandwidth, σ̂  is the standard deviation of the sample returns, and n is 

the number of observations, is selected by recommendation of Jones, Marron and Sheather 

(1996). 

 

Data 

 The data for this study consists of daily closing prices of call options written on the 

stocks that are included in the Dow Jones Industrial Average. The study covers the eight-year 

period from January 2, 1996 through December 31, 2003, since this is the period when 

prices of options on individual stocks are available to us. In addition to the daily closing 

option prices, we use monthly stock returns and daily stock closing prices from CRSP. Table 

1 lists the firms in the sample. We include all stocks that were a Dow component at some 

time during this period. For example, Microsoft and Intel were added to the Dow in 

November, 1999 but we use the data back to the beginning of 1996. Goodyear was removed 

from the Dow in November, 1999 but we use the data for this stock through the end of the 

sample. There are cases when there is not enough options data to estimate risk aversion for a 

stock. We exclude Bethlehem Steel (BS), Westinghouse Electric (WX), and Woolworth (Z) because 

of insufficient data. We begin with 44 firms, and include 41 firms in the final study. 

 Summary statistics for the firms in the sample is given in Table 2. The table gives 

market capitalization at the beginning and the end of the sample, the total holding period 

return over the sample period (HPR), as well as risk and return characteristics of the stocks 

in the sample. General Electric (GE) is the largest firm in the sample with market capitalization 
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of $122 Billion and AT&T (T) is the second largest with market capitalization of $107 

Billion. At the end of our sample, GE is the largest firm in the sample with market 

capitalization of $311 Billion (Microsoft is the second largest with $295 Billion). The average 

market capitalization has grown from $36.9 Billion at the beginning to $99.6 Billion at the 

end of the sample period. Citigroup (C) is the best performing firm in the group, with HPR of 

1,181%. Pfizer (PFE) has the second highest HPR of 580%. The average HPR is 170%, 

which corresponds to 2.94% return compounded annually over the period of 8 years. Table 

2 also displays risk and return characteristics of the firms in the sample, including firm betas 

(computed both with respect to S&P 500 and CRSP Value-Weighted Index), average 

monthly returns, and variances of returns. 

To estimate risk aversion we need prices of options written on the stocks in the 

sample. All previous researchers have studied risk aversion using the options on the S&P 

500 Index. For index options, a relatively large cross section of strikes exists, all with the 

same expiration date. Because of this large selection of options, Bliss and Panigirtzoglou 

(2004) require at least 5 such options in order to do their estimation. We are considering 

individual stocks. Companies tend to have a smaller cross section of options with different 

strike prices and their options are comparatively less liquid than index options. Because of 

this, we require a firm to have options with at least three different strike prices. In addition, 

similar to Jackwerth (2000), we estimate risk aversion with a constraint on the money-ness. 

Jackwerth only considers options such that the ratio of the strike price to the stock price is 

between 0.84 and 1.12. This procedure eliminates far-away-from-the-money observations. 

This may cause a problem of missing observations, but only when there are large 

movements in the stock price.  Since options with only a few different strikes are traded for 

each firm (usually five or six strikes), a large enough movement in the stock price causes the 



 23

money-ness to fall in a window that does not have three option contracts for us to use. We 

do not estimate risk aversion for such days. Not surprising, tossing out options that are way 

in the money or way out of the money affects risk aversion estimates in the tales of the 

distribution. Our robustness checks indicate that the estimates in the middle of the 

distribution are generally unaffected by the money-ness constraints. We find our results to be 

robust to the selection of options. 

 For our estimation, we consider options that expire between one and four months 

from day t. Options on stocks generally exist with expiration dates at three-month intervals.13 

For example, options on Microsoft expire in January, April, July, and October.  Therefore, 

for all days in January, we use options expiring in April. For all days in March, we use those 

options expiring in July. We use this approach to maintain a relatively constant horizon for 

our analysis, and at the same time to have a sufficient number of option contracts to obtain 

reliable risk aversion estimates.  

For each of the 41 stocks in the sample, for each trading day between January 4, 

1996 and December 31, 2003 we calculate estimates of Arrow-Pratt risk aversion functions 

across wealth, a computationally intensive process. The wealth lies in the interval [0.95, 1.05]. 

For each wealth level we calculate the mean risk aversion across the period 4-Jan-96 – 31-

Dec-03. In addition, we calculate their empirical standard deviations. 

 

Results 

After estimating risk aversion for the firms in the sample, we classify the risk 

aversion patterns as being consistent with several classes of utility functions.  We find 

evidence supporting the existence of five distinct utility functions: Kahneman and Tversky, 
                                                 
13 See Battalio, Hatch, and Jennings (2004), and Mayhew and Mihov (2004) for the description of the equity 
options markets including institutional background. 
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Friedman and Savage, Markowitz, Constant Absolute Risk Aversion (CARA) and Constant 

Relative Risk Aversion (CRRA).  Our final classification is listed in Table 3. 

Evidence supporting the utility function with risk-seeking regions is extensive.  

Figure 4 displays estimated risk aversion for four firms that support Friedman and Savage 

utility function: Chevron (CHV), General Electric (GE), General Motors (GM) and Proctor and 

Gamble (PG).   

More surprising is the support for the Markowitz utility function.  This function is 

characterized by the restrictive condition requiring risk aversion to change from positive to 

negative at current wealth, w=1.  Figure 3 displays estimated risk aversion as a function of 

wealth for four firms supporting the existence of the Markowitz utility function: 3M Company 

(MMM), Eastman Kodak (EK), Walt Disney (DIS), and PepsiCo (PEP). 

Our classification consists of several steps. We first identify risk aversion functions 

having both positive and negative regions. Such risk aversion functions characterize 

Friedman and Savage, Markowitz, and Kahneman and Tversky utility functions but do not 

characterize CARA and CRRA utility functions.  For each firm, using daily risk aversion 

estimates from 1996 to 2003 and wealth levels from 0.95 to 1.05 with step size 0.001, we test 

whether the median and mean risk aversion for each wealth level is significantly different 

from zero. We use a sign test to determine if the median is significantly different from zero 

and we use the Wilcoxon Signed Rank Test to measure whether the mean is significantly 

different from zero. We classify the risk aversion for a particular wealth level as significantly 

positive (negative) if the estimate is positive (negative) and both the sign test and the 

Wilcoxon Signed Rank Test show that estimate to be significant. Based on the test result we 

classify the risk aversion profile as being consistent with one of the following utility 
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functions: Friedman and Savage (FS); Friedman and Savage—partial support (FSP); 

Markowitz (M); Kahneman-Tversky—partial support, (KTP); or “Other.” 

We label the firm “FS” if the estimated risk aversion is positive for a range of wealth, 

then negative, and then positive again. If the tests detect the presence of only two regions, 

positive followed by negative, we consider this as partial evidence in support of Friedman 

and Savage utility function since risk aversion could turn positive again for large wealth 

levels and we label such firms “FSP”. For all Friedman and Savage patterns (both “FS” and 

“FSP”), we test the sign of the estimated risk aversion coefficient at w = 1. If risk aversion is 

not statistically different from zero and risk aversion changes from positive to negative then 

this provides evidence consistent with Markowitz utility and we label such firms “M.”14 The 

sign tests also identify risk aversion profiles that provide partial evidence in support of 

Kahneman-Tversky utility, labeled “KTP.” For these firms risk aversion changes from 

negative to positive, but the second condition is not met: risk aversion is not zero at w = 1. 

We classify all other risk aversion profiles as “Other.” The above classification is repeated 

using t-test to show significance (Table 5). We find that the results are virtually identical to 

Table 4. 

The sign tests only help classify utility functions consisting of convex and concave 

regions.  We require additional tests to identify CARA and CRRA type utility functions.  

These functions are characterized not only by the sign of the risk aversion estimate but also 

the shape of the risk aversion function. 

 

                                                 
14 Note that this is a very strong test for Markowitz utility. Given that risk aversion coefficients are statistical 
estimates with standard error associated with them, it is a lot to require that risk aversion equals to zero exactly 
at w = 1. We develop additional tests that reflect this uncertainty in the next section. 
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Markowitz Utility Function 

 To classify estimates of risk aversion as being consistent with Markowitz utility 

function we need to show that three properties hold. The estimates of risk aversion must be 

positive for wealth levels below one, and the estimates of risk aversion must be negative for 

wealth levels above one. The third assumption is most restrictive: Risk aversion must equal 

zero in the neighborhood where wealth equals one. The sign tests are conservative tests. 

These tests identify regions where risk aversion is positive or negative. The defining property 

of Markowitz utility function is that the estimate of risk aversion crosses the horizontal 

(wealth) axis exactly at the wealth level of one. When testing a point hypothesis, whether or 

not risk aversion is zero at the wealth level of one, the sign tests may be two restrictive. We 

address this by developing additional tests for the behavior of the estimated risk aversion 

function at the point w = 1. 

 To test whether or not an estimate of risk aversion is significantly different from 

zero when wealth equals one we develop the following Monte Carlo simulation. There are 

101 equally spaced wealth points in the interval [0.95, 1.05]. For a given firm, for each wealth 

level iw  in this interval, the estimate of risk aversion, ( )iwâ  is a random variable with mean 

( )iwa  and standard deviation ( )[ ]iwâσ . In simulations, for each wealth level iw  in the 

interval, the estimate of risk aversion, )(ˆ iwa  is drawn from ))ˆ(,( ii aaN σ , where ia  the 

average risk aversion (for the firm) for wealth level iw , and )ˆ( iaσ is the standard deviation. 

This is done for all 101 levels of wealth. For each draw of risk aversion coefficients, { }101
1ˆ =iia , 

several polynomial models with wealth as the independent variable are fitted. The objective 

is to use the fitted model to generate estimates of risk aversion at w = 1. For each repetition 

of the Monte Carlo experiment each polynomial model generates one estimate of the value 
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of risk aversion at w = 1. We select the best model (the fit reported in Table 6) and then test 

whether the estimates of risk aversion generated by the best model are statistically different 

from zero at w = 1. The results of these tests are reported in Table 7. We find evidence 

supporting Markowitz utility function for several firms: Alcoa (AA), American International 

Group (AIG), AT&T (T), Citigroup (C), Eastman Kodak (EK), and PepsiCo. (PEP). For Alcoa 

(AA), risk aversion is negative in [0.95, 0.958], positive in [0.967, 0.988], and negative in 

[1.015, 1.05]. Risk aversion is not statistically different from zero at w = 1 (Table 4). This 

profile is remarkably close to Markowitz utility. For American International Group (AIG) risk 

aversion is positive in [0.95, 0.999], zero at w = 1, and negative in [1.007, 1.049], as shown in 

Table 4. The pattern for Citigroup (C) is similar: risk aversion is positive in [0.95, 0.992] and 

negative in [1.005, 1.049]. For Eastman Kodak (EK) risk aversion is positive in [0.95, 0.996], 

zero at w = 1, and negative in [1.004, 1.05]. Table 4 shows that for PepsiCo. (PEP) risk 

aversion is positive in [0.95, 0.999], zero at w = 1, and negative in the interval [1.002, 1.05]. 

For AT&T (T) the t-test (Table 5) indicates that risk aversion is positive for wealth in the 

interval [0.95, 0.994] and negative for [1.003, 10.05]. For Alcoa (AA), American International 

Group (AIG), AT&T (T), Citigroup (C), Eastman Kodak (EK), and PepsiCo. (PEP) in Monte 

Carlo simulations, risk aversion for w = 1 is statistically indistinguishable from zero (Table 6 

and Table 7). 

 Markowitz utility function has a restrictive assumption that risk aversion is zero 

precisely at wealth level of one. Since we are testing a strong hypothesis, sometimes different 

tests provide close but different results. In the case of 3M Company (MMM), the sign test 

shows that risk aversion is positive in the region [0.95, 0.994] and negative in the region 

[0.997, 1.05]. According to the univariate test, risk aversion is statistically not different from 

zero in the interval [0.995, 0.996] and is negative at wealth level of one. Our Monte Carlo 
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tests first fit a model, and then compute estimates of risk aversion at the wealth level of one 

(Table 6 and Table 7). These tests show that risk aversion is statistically indistinguishable 

from zero at w = 1 (the average estimate is -0.49 with t-value of -0.76). We therefore classify 

MMM as providing partial support for Markowitz utility function. 

 Similarly to MMM, we classify Walt Disney Company (DIS) as providing partial 

support for Markowitz utility. Risk aversion is positive in [0.95, 1.007] and negative in the 

region [1.014, 1.05]. According to the sign tests, the estimate of risk aversion is positive at 

the wealth of one. Monte Carlo tests show that risk aversion estimates at w=1 are statistically 

not distinguishable from zero, with the average estimate of -0.26 (t-statistics equals -0.57). 

 Another example of partial support for Markowitz utility is American Express (AXP). 

Estimated risk aversion for this firm is positive in the region [0.95, 1.004], negative for wealth in 

the interval [1.009, 1.03], and then positive again in the region [1.047, 1.05], a pattern 

consistent with Friedman and Savage utility function. According to the univariate sign tests 

estimated risk aversion is positive at the wealth level of one. According to the Monte Carlo 

simulations risk aversion is statistically indistinguishable from zero at the wealth level of one 

(the average value generated by the best fitting model equals 0.96 with t-statistic of 1.47). We 

interpret this as partial support of Markowitz hypothesis. 

 

Kahneman and Tversky Utility Function 

To be classified as a Kahneman-Tversky utility, risk aversion must be negative below 

the wealth level of one, equal zero at the wealth level of one, and be positive above it. Estimates 

of risk aversion for Union Carbide (UK) are consistent with this profile. According to the 

univariate sign tests (Table 4), risk aversion is negative for wealth in the interval [0.95, 1.003] 

and is positive for wealth levels in the interval [1.011, 1.05]. Risk aversion is negative for w = 
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1, but it equals zero for w = 1.004. To further investigate the behavior of risk aversion at w = 

1, we perform Monte Carlo experiments where several models are fit to the estimated risk 

aversion. The best fitting model is used to generate risk aversion estimates at w = 1 (Table 

9).15 The estimates are statistically indistinguishable from zero, consistent with Kahneman-

Tversky utility. 

For several companies risk aversion estimates provide partial support for the profile 

implied by Kahneman and Tversky (Prospect Theory) value function. These companies have 

estimated risk aversion that is negative below the wealth level of one and positive above it. 

The change, however, does not occur exactly at w = 1. We interpret these cases as providing 

partial support for  Kahneman-Tversky’s hypothesis. 

Consider, for example, International Business Machines (IBM). According to the 

univariate tests (Table 4), risk aversion is negative in the interval [0.95, 1.019] and is positive 

in the interval [1.029, 1.05]. Risk aversion is negative (significantly different from zero) at the 

wealth level of one. The Monte Carlo simulation confirms the results from the univariate 

sign tests. 

Caterpillar (CAT) is another company that has a risk aversion profile very close to the 

one implied by the Prospect Theory. Univariate tests (Table 4) show that there is a region 

where risk aversion is negative, [0.95, 0.983], followed by a region where risk aversion is 

positive, [0.987, 1.04]. This pattern is broadly consistent with Kahneman-Tversky utility. 

Risk aversion, however, becomes negative again for wealth in the interval [1.047, 1.05]. 

Prospect Theory in its original form does not make a prediction about the shape of the value 

function for large wealth level. The value function is commonly drawn as a concave function 

for all wealth levels above the current wealth. There is another reason why we cannot classify 

                                                 
15 These experiments are identical to the experiments used to test for Markowitz property. 
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CAT as a strong case of the Prospect Theory utility function. Univariate tests show that risk 

aversion is positive at w = 1. When we perform Monte Carlo simulations and use two best 

fitting models to estimate risk aversion in the neighborhood of w = 1, we find estimates to 

be positive and significant (model fit is reported in Table 8 and estimates are reported in 

Table 9). 

Estimated risk aversion for Sears Roebuck & Co. (S) changes from negative for wealth 

in the interval [0.95, 0.966] to positive in the interval [0.97, 1.05], a pattern consistent with 

Kahneman-Tversky utility (Table 4 and Table 5). The change in sign, however, does not take 

place at the wealth level of one. This is confirmed by Monte Carlo experiments.  

We conclude that IBM, CAT, S have estimated risk aversion profiles that provide 

partial support for Kahneman-Tversky utility.  

 

Friedman and Savage Utility 

 We find remarkably strong support for Friedman and Savage utility function. 

Estimated risk aversion has a profile consistent with concave-convex-concave utility for 20 

out of 41 firms (Figure 4). Chevron (CHV), a company with capitalization of $34.5 Billion in 

1996, is one example. Risk aversion is positive in [0.95, 0.984], negative in [0.986, 1.019], and 

then positive again in [1.02, 1.05]. Another example is General Electric (GE), the largest firm 

in the sample. For GE risk aversion is positive-negative-positive. This risk aversion profile 

describes investors in Exxon Mobil (XOM) and Home Depot (HD). Perhaps the reason for 

finding strong support is that Friedman-Savage hypothesis is the most flexible of the three 

non-concave utility functions. It does not impose point hypotheses as Kahneman-Tversky 

and Markowitz do for the behavior of the function at the point w = 1. 
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There are also cases that we interpret as “partial support” for Friedman and Savage 

utility. For example, for SBC Communications (SBC) a region where risk aversion is positive is 

followed by a region where risk aversion is negative. There is no second positive region, 

however, and we classify SBC as “FSP”. Goodyear (GT) is another example. According to the 

univariate sign tests (Table 4) risk aversion changes from being negative in the interval [0.95, 

0.988] to positive in the interval [0.994, 1.028]. The tests based on t-statistics reported in 

Table 5 confirm this pattern. Among other firms classified in this category are: the second 

largest firm in the sample, Microsoft (MSFT), as well as Coca-Cola (KO), Intel (INTC), Johnson 

& Johnson (JNJ), and Procter and Gamble (PG). 

  

Other Types of Utility Functions 

We find evidence supporting CARA and CRRA utility functions. We also find risk 

aversion profiles that cannot be classified within any class of utility functions that we 

consider.  

For two firms, Altria Group (MO) and Boeing Company (BA) estimates of risk aversion 

are positive and constant, which is consistent with CARA utility. For United Technologies 

Corporation (UTX) estimated risk aversion is positive for all wealth levels. We find that the 

model of risk aversion as a function of (1/w) fits well (Table 8), providing evidence 

consistent with CRRA preferences. 

If risk aversion profile does not match one of the five profiles discussed above we 

classify these companies as “other” in Table 3. This classification applies to International Paper 

(IP), Merck & Company (MRK), Pfizer (PFE), and Wal-Mart Stores (WMT).  
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Conclusion 

 We estimate and analyze risk aversion of investors in the Dow Jones Industrial Average 

stocks. The Dow members are large, visible companies. By studying these firms we minimize 

the impact of transaction costs and liquidity issues and we minimize the impact of 

information asymmetries. These firms are extensively followed by analysts and information 

about the companies is widely available to individual investors. 

In this environment, we find evidence supporting the existence of five distinctly 

different utility functions. We show that asset prices reflect non-concave risk preferences 

with reference points. The support for utility functions with convex regions—as postulated 

by Kahneman and Tversky, Friedman and Savage, and by Markowitz—is much stronger that 

the evidence in favor of the standard uniformly risk-averse preferences. Utility functions 

with convex regions are evident in the data for 34 out of 41 firms in the sample. Only three 

out of 41 functions are uniformly concave and conform to the commonly modeling 

assumptions (CARA, CRRA). For four firms risk aversion profile does not fit into any of the 

above classes. The results for Kahneman and Tversky utility function and Markowitz utility 

are remarkably strong, considering the restrictive characteristics of these functions. These 

functions assume that risk aversion changes sign exactly at the current wealth level. We find 

statistical support for this hypothesis. Asset prices reflect this property. 

We are not the first to report evidence in support of utility functions with convex 

regions, per se. The evidence was found before in controlled experiments.  

It is notable, however, that the support is so strong when we use market data—

prices of individual stocks and options. Kahneman and Tversky, as well as Friedman and 

Savage, and Markowitz developed their utility functions to explain very general patterns in 

human behavior. They did not develop these utility functions with a view of explaining 
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specific well-documented patterns in asset prices. We find that these preferences are 

reflected in prices of Dow Jones stocks. And the evidence, taken together, is strong. Together, 

these three types of utility account for 80% of the market capitalization of the sample stocks. 

Our findings provide two challenges for future research in asset pricing. First, the 

support for commonly used utility functions is relatively weak. Second, the existence of 

several types of utility functions challenges the representative agent paradigm.  
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Appendix 

Convexity in the Theory of Choice 

 The idea that choices involving risk can be explained by the maximization of 

expected utility dates back at least to Daniel Bernoulli’s classical analysis of the St. Petersburg 

paradox. Concave utility functions correspond to economic intuition and have convenient 

mathematical properties.16 Concave functions, however, cannot explain gambling and strong 

evidence that economic agents willingly participate in activities with negative expected 

return. This motivated one of the first modifications to the concave utility function. 

 To explain coexistence of gambling and insurance in human behavior Friedman and 

Savage (1948) propose that an individual’s utility of wealth function is composed of two 

(strictly) concave segments separated by a (strictly) convex segment (Figure 1). Expected 

utility theory with a non-concave utility function remains the most parsimonious model of 

human behavior under uncertainty that allows for gambling (Hartley and Farrell 2002). 

Markowitz (1952) argues that the Friedman and Savage utility function should be 

modified so that the inflection point where the concave region turns into the convex region 

is located exactly at the individual's current wealth. Markowitz (1952) also suggests that the 

utility of wealth function has three inflection points. The utility function is monotonically 

increasing but bounded; it is first convex, then concave, then convex, and finally concave. 

The middle inflection point is defined to be at the current level of wealth. The first inflection 

point is below, the third inflection point is above, current wealth (Figure 2). 

 The notion of increasing marginal utility (convexity) causes certain discomfort 

among the economists. Kwang (1965) suggested a resolution of the problem that is based on 

the indivisibility of consumption. The assumption that the marginal utility of income is 
                                                 
16 For the classical treatment of risk aversion see Arrow (1964), Pratt (1964), Arrow (1965), Arrow (1970). See 
also Rabin and Thaler (2001). 
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continually diminishing (and the utility function is therefore concave) is derived from the 

assumption that the expenditure of the consumer is infinitely divisible. Clearly, this is not the 

case. Kwang (1965) showed that gambling can be consistent with the principles of utility 

maximization when indivisibility of consumption is introduced. Individuals purchase lottery 

tickets with payoffs that give them a positive probability of moving to a new consumption 

level by being able to afford an indivisible consumption good. If the cost of purchasing a 

car, a house, a university education, or a business, appears far beyond the existing means, it 

becomes rational for an individual agent to participate in a gambling opportunity that offers 

a chance of a sufficiently high payoff. Winning such a lottery would bring the individual to a 

qualitatively new “level” of consumption. 

 Another paper offers a very attractive explanation for the existence of convex 

regions in the individual’s utility function. Hakansson (1970) starts with the observation that 

since money is only a means to an end (consumption), the derived utility of wealth is 

dependent on the utility of consumption and the opportunities for achieving it. 

Mathematically, the derived utility of wealth function is defined as 
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In this case the terminal date T  is assumed known and the utility function is assumed 

additively separable. In this formulation ( )•U  is the utility of consumption and ( )•B  is the 

utility of bequest. Clearly, the utility of present wealth is influenced by preferences over 

consumption at each future point in time, utility over bequest, the agent’s labor income, 

future interest rates, the risk and return of the future investment opportunities, and 

borrowing restrictions. Therefore, the determination of an individual’s utility of current 
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wealth requires a model of his total economic decision problem, including the description of 

the investment opportunity set and restrictions, such as borrowing or short-sale constraints. 

Hakansson (1970) develops such a model. He begins with risk averse preferences over 

consumption. He then imposes a borrowing constraint of a reasonable form and finds that 

the constraint gives rise to a Friedman-Savage utility function of current wealth. 

 Perhaps the most well-known class of value function is the prospect theory S-shaped 

function suggested by Kahneman and Tversky. Based on their experimental results, 

Kahneman and Tversky (1979) and Tversky and Kahneman (1992) suggest that the value 

function is convex in the domain of losses (below the current wealth level) and concave in 

the domain of gains (above the current wealth). This function has one inflection point 

located at the current level of wealth. 

 Does convexity create havoc in our asset prices theories that start with the 

assumption of concave utility? Not necessarily. Jarrow (1988) studies an economy consisting 

of an infinite number of assets and shows that the Arbitrage Pricing Theory does not require 

that agents possess preferences that can be represented by risk-averse expected utility 

functions. Blackburn and Ukhov (2005) observe that, at the first glance, utility functions of 

individual investors with convex regions corresponding to risk seeking appear to be in sharp 

contradiction with the “equity premium puzzle.” The puzzle states that the degree of 

individual aversion to risk must be very high to explain aggregate equity returns. Can 

individual investors exhibit risk seeking behavior and at the same time, in the aggregate, 

demand a high positive rate of return for holding risky assets? Blackburn and Ukhov (2005) 

resolve this paradox by showing that risk-seeking behavior at the individual level can be 

consistent with risk-averse behavior at the aggregate level. The authors begin with a model 

where all agents have a convex utility implying they are risk seekers. The agents face a 
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constraint—they cannot infinitely borrow (or sell short). When agents are heterogeneous 

with respect to the initial endowment, under perfect competition the economy is risk averse. 
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Table 1. Dow Jones Industrial Average Components    
 
Company Name Ticker Comments 
3M Company  MMM  
Alcoa Inc.  AA  
Allied Signal Inc. ALD  
Altria Group, Inc.  MO  
American Express Co.  AXP  
American International Group AIG  
AT&T Corp. T  
Bethlehem Steel  BS Trading suspended June 7, 2002. Insufficient data. 
Boeing Company BA  
Caterpillar Inc.  CAT  
Chevron CHV  
Chevron-Texaco  CVX Chevron (CHV) and Texaco (TX) merged on 10 Oct-2001 to form 

Chevron-Texaco (CVX). Estimate CHV, CVX, TX. 
Citigroup Incorporated C  
Coca-Cola  KO  
Du Pont   DD  
Eastman Kodak  EK  
Exxon Mobil Corporation  XOM  
General Electric Company  GE  
General Motors  GM  
Goodyear GT  
Hewlett-Packard Co.  HPQ  
Home Depot, Inc.  HD  
Honeywell International, Inc.  HON Honeywell merged with Allied Signal Inc. (ALD) on 30-Nov-99. 

Estimate pre-merger ALD and HON. 
Intel Corporation  INTC  
International Business Machines  IBM  
International Paper  IP  
Johnson & Johnson  JNJ  
J.P. Morgan & Company  JPM Chase Manhattan Bank and J.P. Morgan merged on 31-Dec-2000 to 

form J.P. Morgan Chase & Company (JPM). Estimated for pre-
merger J.P. Morgan & Company. 

McDonald’s Corp. MCD  
Merck & Company, Inc.  MRK  
Microsoft Corporation  MSFT  
PepsiCo  PEP Not a Dow Component; Included for comparison with Coca Cola. 
Pfizer, Inc.  PFE  
Procter and Gamble Co. PG  
SBC Communications  SBC  
Sears Roebuck & Co. S  
Texaco  TX Chevron (CHV) and Texaco (TX) merged on 10-Oct-2001. 
Union Carbide  UK Union Carbide became a subsidiary of Dow Chemical Company on 

6-Feb-2001. 
United Technologies Corporation UTX  
Verizon Communications, Inc.  VZ  
Wal-Mart Stores, Inc. WMT  
Walt Disney Company DIS  
Westinghouse Electric  WX Acquired by BNFL, plc. (United Kingdom) in March 1999; 

Insufficient data. 
Woolworth  Z Changes its name to Venator on 12-Jun-98; then to Foot Locker on 

02-Nov-2001. New ticker (FL) starting 31-Mar-2003. 
Insufficient data. 

   
 



 
Table 2. Summary Statistics and Risk and Return Characteristics 
 

Ticker 

Market Cap 
2-Jan-96 
($MM) 

Market Cap 
31-Dec-03 

($MM) 

Beta 
S&P500 

 

Beta 
CRSP VW 

 

Avg. Return 
Monthly 
(96-03) 

Variance 
of Return 
(96-03) 

HPR 
2-Jan-96  

to 31-Dec-03 
AA 9,635.79 32,883.49 1.106 1.105 1.73% 1.22% 241.26%
AIG 44,268.34 172,854.66 0.881 0.778 1.35% 0.58% 290.47%
ALD 13,930.51 3,559.22 1.113 1.016 0.98% 1.36% -74.45%
AXP 20,102.81 62,037.48 1.052 0.985 1.69% 0.70% 208.60%
BA 27,408.79 33,721.10 0.842 0.809 0.63% 0.89% 23.03%
BS 1,590.25 32.75* 1.619 1.564 -2.53% 3.14% -97.94%
C 19,534.00 250,402.18 1.125 1.051 2.25% 0.97% 1181.88%
CAT 11,752.38 28,661.82 0.894 0.826 1.48% 0.83% 143.88%
CHV 34,486.87 92,347.37 0.730 0.679 1.00% 0.39% 167.78%
DD 39,983.26 45,742.10 0.901 0.849 0.88% 0.59% 14.40%
DIS 31,823.87 47,718.34 1.027 0.967 0.35% 0.81% 49.95%
EK 23,477.09 7,356.35 0.915 0.860 -0.31% 0.89% -68.67%
GE 122,765.21 311,065.84 0.963 0.906 1.57% 0.59% 153.38%
GM 39,156.10 29,944.10 1.078 1.058 1.01% 1.04% -23.53%
GT 6,840.30 1,377.94 1.211 1.167 -0.64% 1.65% -79.86%
HD 22,589.25 80,747.42 0.961 0.977 1.84% 0.91% 257.46%
HON 6,158.43 28,818.36 1.110 1.015 0.93% 1.45% 367.95%
HPQ 42,735.30 70,038.75 1.329 1.411 1.19% 1.84% 63.89%
IBM 50,736.88 159,448.80 1.111 1.064 2.12% 1.16% 214.27%
INTC 48,142.85 207,908.35 1.309 1.293 2.34% 2.08% 331.86%
IP 10,202.16 20,712.93 0.994 0.917 0.67% 0.93% 103.03%
JNJ 54,562.49 153,334.27 1.224 1.184 1.34% 1.12% 181.03%
JPM 15,214.51 74,939.15 0.637 0.550 1.40% 0.98% 392.55%
KO 94,077.15 124,414.23 0.746 0.689 0.81% 0.65% 32.25%
MCD 31,680.69 31,513.34 0.935 0.835 0.52% 0.65% -0.53%
MMM 28,430.95 66,738.60 0.673 0.649 1.24% 0.46% 134.74%
MO 76,691.37 110,536.38 0.557 0.505 1.73% 0.98% 44.13%
MRK 79,112.18 102,794.86 0.720 0.586 1.24% 0.74% 29.94%
MSFT 52,952.50 295,294.93 1.179 1.146 2.66% 1.63% 457.66%
PEP 43,926.82 80,034.75 0.814 0.756 0.99% 0.55% 82.20%
PFE 39,600.59 269,621.71 0.679 0.587 1.69% 0.58% 580.85%
PG 57,050.77 129,517.09 0.515 0.481 1.34% 0.55% 127.02%
S 15,740.19 11,977.52 0.834 0.791 0.43% 1.14% -23.90%
SBC 35,600.58 86,309.17 0.882 0.766 0.65% 0.85% 142.44%
T 107,251.90 16,034.42 1.077 1.071 0.23% 1.18% -85.05%
TX 20,798.66 38,476.89* 0.596 0.524 1.22% 0.46% 85.00%
UK 5,147.29 7,063.99* 0.897 0.819 1.10% 0.86% 37.24%
UTX 11,438.25 44,594.88 0.977 0.920 1.85% 0.79% 289.87%
VZ 29,627.41 96,875.17 0.917 0.789 0.80% 0.83% 226.98%
WMT 53,376.33 229,588.78 0.741 0.663 2.05% 0.71% 330.13%
WX 7,111.34 45,072.06* 0.852 0.916 2.95% 0.87% 533.81%
XOM 100,110.29 271,001.80 0.645 0.610 1.14% 0.25% 170.70%
Z 1,746.16 3,360.76 0.901 0.828 1.70% 2.68% 92.47%
       
 
*BS ending price and ending market cap are as of 6/11/2002. 
*TX ending price and ending market cap are as of 10/9/2001. 
*WX ending price and ending market cap are as of 5/3/2000. 
HPR is adjusted for stock splits. All Betas are significant at 1% level or better. 
 
 
 



Table 3 
Support for Different Utility Functions 
 
Using daily risk aversion estimates from 1996-2004 and wealth levels ranging from 0.95 to 1.05 with step size 
of 0.001, we test whether the median and mean risk aversion for each wealth is significantly different from 
zero. Based on whether risk aversion is positive, zero, or negative we determine the risk aversion profile. We 
then classify risk aversion profile as being consistent with one of the following utility functions: Friedman and 
Savage, Friedman and Savage, partial support, Markowitz (M), Kahneman-Tversky, partial support, CARA, 
CRRA, or “Other.” If the risk aversion is positive-negative-positive than we classify is as Friedman and 
Savage. If only a part of this profile is present (positive-negative) then we classify it as FS, Partial support. 
Companies in bold are discussed in detail in the text. 
 
Friedman and Savage  Chevron (CHV) 

Exxon Mobil Corporation (XOM)  
General Electric (GE) 
Home Depot (HD) 
Honeywell International, Inc. (HON) 
McDonald’s Corp. (MCD) 

Friedman and Savage 
Partial support 

Allied Signal Inc. (ALD) 
Coca-Cola (KO) 
Chevron-Texaco (CVX)  
Du Pont (DD)  
General Motors (GM)  
Goodyear (GT)  
Hewlett-Packard Co. (HPQ)  
Intel Corporation (INTC)  
J.P. Morgan & Company (JPM)  
Johnson & Johnson (JNJ)  
Microsoft Corporation (MSFT) 
Procter & Gamble (PG)  
SBC Communications (SBC)  
Texaco (TX) 
Verizon Communications, Inc. (VZ) 

Markowitz  3M Company (MMM) (RA = 0 for 996.0995.0 ≤≤ w ) 
Alcoa Inc. (AA) (RA = 0 for w = 1) 
American Express Co. (AXP) (RA = 0 for 008.1005.1 ≤≤ w ) 
American International Group (AIG) (RA = 0 for w = 1) 
AT&T (T)  (RA = 0 for w = 1) 
Citigroup Incorporated (C) (RA = 0 for w = 1) 
Eastman Kodak (EK)  (RA = 0 for w = 1) 
PepsiCo. (PEP) (RA = 0 for w = 1) 
Walt Disney Company (DIS) (RA = 0 for 014.1008.1 ≤≤ w ) 

Kahneman and Tversky Caterpillar Inc. (CAT) (Partial support) 
International Business Machines (IBM) (Partial support) 
Sears Roebuck & Co. (S) (Partial support) 
Union Carbide (UK)  

CARA Altria Group, Inc. (MO) 
Boeing Company (BA) 

CRRA United Technologies Corporation (UTX) 
Other International Paper (IP) 

Merck & Company, Inc. (MRK) 
Pfizer, Inc. (PFE) 
Wal-Mart Stores (WMT) 

 
 



Table 4 
Univariate Sign Test 
Using daily risk aversion estimates from 1996-2004 and wealth levels ranging from 0.95 to 1.05 with 
step size of 0.001, we test whether the median and mean risk aversion for each wealth is significantly 
different from zero. We use a sign test to determine if the median is significantly different from zero 
and we use the Wilcoxon Signed Rank Test to measure whether the mean is significantly different 
from zero.  We classify the risk aversion for a particular wealth level as significantly positive 
(negative) if the estimate is positive (negative) and both the sign test and the Wilcoxon Signed Rank 
Test show that the estimate to be significant. Based on the test results we classify risk aversion profile 
as being consistent with one of the following utility functions: Friedman and Savage (FS), Friedman 
and Savage, partial support, (FSP), Markowitz (M), Kahneman-Tversky, partial support, (KTP), or 
“Other.” 
 
Ticker Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
RA at W=1 Utility 

AA Negative Positive Negative  W=1 M 
 0.95-0.958 0.967-0.988 1.015-1.05  Insignificant  
       
AIG Positive Negative   W=1 M 
 0.95-0.999 1.007-1.049   Insignificant  
       
ALD Positive Negative   W=1 FSP 
 0.95-1.043 1.049-1.05   Positive  
       
AXP Positive Negative Positive  W=1 FS 
 0.95-1.004 1.009-1.03 1.047-1.05  Positive  
       
BA Positive Positive   W=1 Other 
 0.95-0.97 0.99-1.047   Positive  
       
CAT Negative Positive Negative  W=1 Other 
 0.95-0.983 0.987-1.04 1.047-1.05  Positive  
       
CHV Positive Negative Positive  W=1 FS 
 0.95-0.984 0.986-1.019 1.02-1.05  Negative  
       
CITI Positive Negative   W=1 M 
 0.95-0.992 1.005-1.049   Insignificant  
       
CVX Positive Negative   W=1 FSP 
 0.95-0.962 0.967-1.05   Negative  
       
DD Positive Negative Negative  W=1 FSP 
 0.95-0.952 0.97-0.995 1.007-1.05  Insignificant  
       
DIS Positive Negative   W=1 FSP 
 0.95-1.007 1.014-1.05   Positive  
       
EK Positive Negative   W=1 M 
 0.95-0.996 1.004-1.05   Insignificant  
       



Table 4 (Continued) 
Univariate Sign Test 
 
Ticker Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
RA at W=1 Utility 

GE Positive Negative Positive  W=1 FS 
 0.95-0.977 0.979-1.039 1.048-1.05  Negative  
       
GM Positive Negative   W=1 FSP 
 0.95-0.953 0.955-1.049   Negative  
       
GT Positive Negative   W=1 FSP 
 0.95-0.988 0.994-1.028   Negative  
       
HD Positive Negative Positive  W=1 FS 
 0.95-0.961 0.966-1.031 1.035-1.05  Negative  
       
HON Positive Negative Positive Negative W=1 FS 
 0.95-0.978 0.981-1.012 1.018-1.037 1.043-1.05 Negative  
       
HPQ Positive Negative   W=1 FSP 
 0.95-0.986 0.994-1.05   Negative  
       
IBM Negative Positive   W=1 Other 
 0.95-1.019 1.029-1.05   Negative  
       
IP Negative Positive Negative  W=1 Other 
 0.95-0.952 0.97-1.005 1.011-1.05  Positive  
       
INTC Positive Negative   W=1 FSP 
 0.95-0.97 0.987-1.05   Negative  
       
JNJ Positive Negative   W=1 FSP 
 0.95-0.967 0.968-1.046   Negative  
       
JPM Positive Negative   W=1 FSP 
 0.95-1.019 1.021-1.05   Positive  
       
KO Positive Negative   W=1 FSP 
 0.95-1.012 1.023-1.05   Positive  
       
MCD Positive Negative Positive  W=1 FS 
 0.95-0.958 0.966-0.971 0.985-1.049  Positive  
       
MMM Positive Negative   W=1 FSP 
 0.95-0.994 0.997-1.05   Negative  
       
MO Positive    W=1 Other 
 0.95-1.05    Positive  
       
MRK Negative Positive   W=1 Other 
 0.95-1.026 1.038-1.05   Negative  



Table 4 (Continued) 
Univariate Sign Test 
 
Ticker Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
RA at W=1 Utility 

MSFT Positive Negative   W=1 FSP 
 0.95-0.953 0.967-1.05   Negative  
       
PEP Positive Negative   W=1 M 
 0.95-0.999 1.002-1.05   Insignificant  
       
PFE Negative Positive Negative  W=1 Other 
 0.95-0.962 0.964-1.023 1.025-1.05  Positive  
       
PG Positive Negative   W=1 FSP 
 0.95-0.985 0.987-1.044   Negative  
       
S Negative Positive   W=1 Other 
 0.95-0.966 0.97-1.05   Positive  
       
SBC Positive Negative Negative  W=1 FSP 
 0.952-0.957 0.993-1.002 1.007-1.036  Negative  
       
T Negative    W=1 Other 
 0.999-1.05    Negative  
       
TX Positive  Negative   W=1 FSP 
 0.95-0.991 0.995-1.05   Negative  
       
UK Negative Positive   W=1 KTP 
 0.95-1.003 1.011-1.05   Negative  
       
UTX Positive    W=1 Other 
 0.95-1.05    Positive  
       
VZ Positive  Negative   W=1 FSP 
 0.95-0.97 0.972-1.05   Negative  
       
WMT Negative Negative Positive   W=1 Other 
 0.95-0.96 0.982-1.029 1.048-1.05  Negative  
       
WX Positive  Negative   W=1 FSP 
 0.95-0.973 0.986-1.05   Negative  
       
XOM Positive  Negative Positive   W=1 FS 
 0.95-0.976 0.98-1.023 1.034-1.047  Negative  
       
Z Negative    W=1 Other 
 0.95-1.05    Negative  
       
 
 



Table 5 
Univariate t-test 

Using daily risk aversion estimates from 1996-2003 and wealth levels ranging from 0.95 to 1.05 with 

step size of 0.001, we test whether the median and mean risk aversion for each wealth is significantly 

different from zero.  A t-test is used to determine significance.  The t-statistic is )//( nsat = , 

where a  is the sample average risk aversion for a firm, s is the estimated standard deviation, and n is 

the number of observations. The mean is considered significant for a particular wealth level if it is 

significant at the 10% level. Based on the test results we classify risk aversion profile as being 

consistent with one of the following utility functions: Friedman and Savage (FS), Friedman and 

Savage, partial support, (FSP), Markowitz (M), Kahneman-Tversky, partial support, (KTP), or 

“Other.” 
 
Ticker Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
RA at W=1 Utility 

AA Negative Positive Negative  W=1 MP 
 0.95-0.961 0.965-1.012 1.015-1.05  Positive  
       
AIG Positive Negative   W=1 M 
 0.95-0.998 1.001-1.05   Insignificant  
       
ALD Positive Negative   W=1 FSP 
 0.95-1.041 1.046-1.05   Positive  
       
AXP Positive Negative   W=1 FSP 
 0.95-1.005 1.007-1.044   Positive  
       
BA Positive Negative Positive  W=1 FS 
 0.95-0.968 0.974-0.977 0.986-1.048  Positive  
       
CAT Negative Positive Negative  W=1 Other 
 0.95-0.985 0.987-1.042 1.047-1.05  Positive  
       
CHV Positive Negative Positive  W=1 FS 
 0.95-0.984 0.986-1.019 1.02-1.05  Negative  
       
CITI Positive Negative   W=1 MP 
 0.95-0.994 0.999-1.05   Negative  
       
CVX Positive Negative   W=1 FSP 
 0.95-0.962 0.965-1.05   Negative  
       
DD Positive Negative   W=1 FSP 
 0.95-0.952 0.962-1.049   Negative  
       
DIS Positive Negative   W=1 FSP 
 0.95-1.006 1.01-1.05   Positive  
       



Table 5 (Continued) 
Univariate t-test 
 
Ticker Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
RA at W=1 Utility 

EK Positive Negative   W=1 MP 
 0.95-0.995 0.998-1.05   Negative  
       
GE Positive Negative   W=1 FSP 
 0.95-0.977 0.979-1.046   Negative  
       
GM Positive Negative   W=1 FSP 
 0.95-0.953 0.955-1.05   Negative  
       
GT Positive Negative   W=1 FSP 
 0.95-0.988 0.992-1.03   Negative  
       
HD Positive Negative Positive  W=1 FS 
 0.95-0.961 0.963-1.033 1.035-1.05  Negative  
       
HON Positive Negative Positive Negative W=1 FS 
 0.95-0.979 0.981-1.015 1.02-1.037 1.041-1.05 Negative  
       
HPQ Positive Negative   W=1 FSP 
 0.95-0.986 0.992-1.05   Negative  
       
IBM Negative Positive   W=1 Other 
 0.95-1.017 1.025-1.05   Negative  
       
IP Negative Positive Negative  W=1 Other 
 0.95-0.957 0.971-1.005 1.012-1.05  Positive  
       
INTC Positive Negative   W=1 FSP 
 0.95-0.968 0.974-1.05   Negative  
       
JNJ Positive Negative   W=1 FSP 
 0.95-0.965 0.967-1.049   Negative  
       
JPM Positive Negative   W=1 FSP 
 0.95-1.019 1.021-1.05   Positive  
       
KO Positive Negative   W=1 FSP 
 0.95-1.011 1.016-1.05   Positive  
       
MCD Positive Negative Positive  W=1 FS 
 0.95-0.956 0.96-0.981 0.986-1.05  Positive  
       
MMM Positive Negative   W=1 FSP 
 0.95-0.993 0.997-1.05   Negative  
       



Table 5 (Continued) 
Univariate t-test 
 
Ticker Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
Sign of RA 

Wealth 
RA at W=1 Utility 

MO Positive    W=1 Other 
 0.95-1.05    Positive  
       
MRK Negative Positive   W=1 Other 
 0.95-1.026 1.035-1.05   Negative  
       
MSFT Positive Negative   W=1 FSP 
 0.95-0.955 0.959-1.05   Negative  
       
PEP Positive Negative   W=1 MP 
 0.95-1.00 1.002-1.05   Positive  
       
PFE Negative Positive Negative  W=1 Other 
 0.95-0.962 0.964-1.023 1.024-1.05  Positive  
       
PG Positive Negative   W=1 FSP 
 0.95-0.984 0.986-1.044   Negative  
       
S Negative Positive   W=1 Other 
 0.95-0.966 0.97-1.05   Positive  
       
SBC Positive Negative Negative  W=1 FSP 
 0.952-0.982 0.993-1.00 1.008-1.036  Negative  
       
T Positive Negative   W=1 M 
 0.95-0.994 1.003-1.05   Insignificant  
       
TX Positive  Negative   W=1 FSP 
 0.95-0.99 0.993-1.05   Negative  
       
UK Negative Positive   W=1 KTP 
 0.95-1.006 1.012-1.05   Negative  
       
UTX Positive    W=1 Other 
 0.95-1.05    Positive  
       
VZ Positive  Negative   W=1 FSP 
 0.95-0.97 0.972-1.05   Negative  
       
WMT Negative Negative Positive   W=1 Other 
 0.95-0.969 0.983-1.045 1.048-1.05  Negative  
       
WX Positive  Negative   W=1 FSP 
 0.95-0.975 0.984-1.05   Negative  
       
XOM Positive  Negative Positive   W=1 FS 
 0.95-0.978 0.982-1.03 1.035-1.046  Negative  
       
Z Negative    W=1 Other 
 0.95-1.05    Negative  



Table 6 
Markowitz Utility Function: Monte Carlo Model Selection 

The table reports the results of Monte Carlo model selection tests. There are 101 equally spaced wealth points 
in the interval [0.95, 1.05]. For each wealth level in the interval, iw , estimate of risk aversion, )(ˆ iwa  is drawn 
from ))ˆ(,( ii aaN σ , where ia  the average risk aversion (for the firm) for wealth level iw , and )ˆ( iaσ is the 
standard deviation. For each draw of risk aversion coefficients, { }101

1ˆ =iia , several polynomial models with 
wealth as the independent variable are fitted. The table reports the averages and Monte Carlo standard errors 
(in parentheses) of the regression coefficients obtained in simulations. The symbols *, **, *** indicate 
significance at 10%, 5%, and 1% levels, respectively. 
 

Symbol Intercept w w2  w3  AdjR2  
AA 48.87 *** -48.74 ***   0.04 
 (16.13) (16.03)   (0.03) 
 -1283.2 *** 1951.37 ***  -666.36 *** 0.08 
 (532.04) (800.17)  (267.12) (0.05) 
 -630.59 ***  1943.96 *** -1311.6 *** 0.08 
 (265.37)  (799.77) (533.40) (0.05) 
AIG 151.85 *** -150.10 ***   0.26 
 (26.49) (26.78)   (0.08) 
 1504.07 *** -2180.5 ***  676.46 ** 0.29 
 (664.39) (1001.04)  (336.07) (0.07) 
 781.28 ***  -2191.52 *** 1410.26 *** 0.29 
 (331.88)  (1003.9) (671.43) (0.07) 
AXP 102.55 *** -100.63 ***   0.25 
 (17.83) (18.08)   (0.07) 
 449.81 ***  -1244.74 ** 795.88 ** 0.27 
 (202.26)  (612.57) (409.97) (0.07) 
 -49023.4 ** 148550.00 ** -149848.0 ** 50323.20 ** 0.30 
 (24271.70) (73092.90) (73337.4) (24516.00) (0.07) 
C 43.76 *** -44.00 ***   0.07 
 (15.85) (15.81)   (0.05) 
 14.42 ***   -14.63 *** 0.07 
 (5.33)   (5.27) (0.05) 
DIS 71.42 *** -71.74 ***   0.17 
 (16.35) (16.41)   (0.07) 
 23.84 ***   -24.10 *** 0.17 
 (5.44)   (5.48) (0.07) 
EK 100.52 *** -100.41 ***   0.19 
 (20.44) (20.48)   (0.07) 
 33.53 ***   -33.34 *** 0.19 
 (6.83)   (6.84) (0.07) 
HPQ 14.57 ***   -15.18 *** 0.12 
 (4.22)   (4.06) (0.06) 
MMM 162.90 *** -163.53 ***   0.35 
 (22.75) (22.45)   (0.07) 
 53.74 ***   -54.23 *** 0.35 
 (7.77)   (7.44) (0.07) 
PEP 178.25 *** -179.19 ***   0.30 
 (23.54) (24.23)   (0.06) 
 58.93 ***   -59.73 *** 0.30 
 (8.03)   (7.82) (0.06) 
 -115521 *** 346957 *** -346995 *** 115559 *** 0.36 
 (38071.2) (114212) (114154) (38013.3) (0.07) 
T 29.53 ***   -30.77 *** 0.06 
 (12.49)   (12.37) (0.05) 
      

 



Table 7 
Testing for Markowitz property 
The table reports tests of Markowitz property (risk aversion equals zero at w = 1) based on Monte Carlo 
simulations. There are 101 equally spaced wealth points in the interval [0.95, 1.05]. For each wealth level in 
the interval, iw , estimate of risk aversion, )(ˆ iwa  is drawn from ))ˆ(,( ii aaN σ , where ia  the average risk 
aversion (for the firm) for wealth level iw , and )ˆ( iaσ is the standard deviation. For each draw of risk 
aversion coefficients, { }101

1ˆ =iia , several polynomial models with wealth as the independent variable are fitted. 
For the best fitting models we compute the value of risk aversion at w = 1 and test whether risk aversion 
equals to zero. 
 
       
 Symbol Model Average St. Dev. t-value  
 AA w⋅+ 10 ββ  0.13 0.67 0.19  

  3
210 ww ⋅+⋅+ βββ  1.83 1.21 1.52  

  3
2

2
10 ww ⋅+⋅+ βββ  1.82 1.21 1.51  

 AIG 3
210 ww ⋅+⋅+ βββ  0.02 1.03 0.02  

  3
2

2
10 ww ⋅+⋅+ βββ  0.01 1.03 0.01  

 AXP 3
2

2
10 ww ⋅+⋅+ βββ  0.94 0.66 1.43  

  3
3

2
210 www ⋅+⋅+⋅+ ββββ 0.96 0.66 1.47  

 C w⋅+ 10 ββ  -0.24 0.46 -0.52  

  3
10 w⋅+ ββ  -0.21 0.46 -0.44  

 DIS w⋅+ 10 ββ  -0.32 0.46 -0.70  

  3
10 w⋅+ ββ  -0.26 0.46 -0.57  

 EK w⋅+ 10 ββ  0.11 0.59 0.18  

  3
10 w⋅+ ββ  0.19 0.59 0.33  

 HPQ 3
10 w⋅+ ββ  -0.61 0.36 -1.69  

 MMM w⋅+ 10 ββ  -0.63 0.64 -0.99  

  3
10 w⋅+ ββ  -0.49 0.65 -0.76  

 PEP w⋅+ 10 ββ  -0.94 0.75 -1.25  

  3
10 w⋅+ ββ  -0.79 0.76 -1.04  

  3
3

2
210 www ⋅+⋅+⋅+ ββββ -0.67 1.20 -0.56  

 T 3
10 w⋅+ ββ  -1.25 1.07 -1.16  

       
       
       
 
 



Table 8 
Monte Carlo Model Selection: Other Types of Utility Functions 
The table reports Monte Carlo model selection experiments for utility functions of firms that are classified as 
“other” based on univariate tests. The “other” category includes all risk aversion profiles that are not 
classified as (a) Friedman and Savage, (b) Markowitz, or (c) Kahneman and Tversky. The symbols *, **, *** 
indicate significance at 10%, 5%, and 1% levels, respectively. 
 
       
 Intercept w w2  w3  (1/w) AdjR2  
CAT -1161.05 ***  3395.71 *** -2231.55 ***  0.15 
 (347.27)  (1040.04) (691.61)  (0.06) 
 92823.4 *** -282200 *** 285699 *** -96318.8 ***  0.18 
 (37002.7) (111352.0) (111641.0) (37291.3)  (0.07) 
IBM -45.32 ***   41.19 ***  0.27 
 (6.32)   (6.31)  (0.07) 
 65495.9 *** -196389 *** 196055 *** -65165.6 ***  0.31 
 (27961.3) (83997.5) (84070.5) (28034.2)  (0.07) 
S -2305.67 * 4554.66 * -2244.43 *   0.06 
 (1371.62) (2740.93) (1368.46)   (0.05) 
 -785.60 *  2302.32 * -1512.18 *  0.06 
 (458.48)  (1372.2) (912.82)  (0.05) 
UK -34.22 ***   34.29 ***  0.05 
 (15.87)   (15.59)  (0.04) 
UTX -45.65 ***    50.72 *** 0.041 
[CRRA] (21.95)    (21.97) (0.037) 
       
       
 
Table 9 
Testing the Behavior of Other Type of Utility Functions 
The table reports Monte Carlo model selection experiments for utility functions of firms that are classified as 
“other” based on univariate tests. The “other” category includes all risk aversion profiles that are not 
classified as (a) Friedman and Savage, (b) Markowitz, or (c) Kahneman and Tversky. For CAT, IBM, S, and 
UK we test the null hypothesis that risk aversion equals zero at w = 1 (as implied by Kahneman-Tversky 
utility). 
 

 Model Average St. Dev. t-value 
CAT 
At w = 1 

3
2

2
10 ww ⋅+⋅+ βββ  3.12 1.47 2.12 

 3
3

2
210 www ⋅+⋅+⋅+ ββββ 3.08 1.47 2.10 

IBM 
At w = 1 

3
10 w⋅+ ββ  -4.13 0.56 -7.42 

 3
3

2
210 www ⋅+⋅+⋅+ ββββ -4.50 0.82 -5.46 

S 
At w = 1 

2
210 ww ⋅+⋅+ βββ  4.56 1.48 3.07 

 3
3

2
210 www ⋅+⋅+⋅+ ββββ 4.55 1.48 3.07 

UK 
At w = 1 

3
10 w⋅+ ββ  0.07 1.37 0.05 

     
 



Figure 1. Friedman and Savage Utility of Wealth Function. 
Utility as a function of wealth. The function has two concave regions separated by a convex region. 
 
 

 
 
 
 
Figure 2. Markowitz Utility of Wealth Function. 
Utility as a function of wealth. The function has three inflection points. The second inflection point, 
where the function changes from being concave to being convex, is located at the current level of 
wealth. 
 
 

 
 
 



Figure 3. Risk Aversion Consistent With Markowitz Utility. 
Risk aversion as a function of wealth for investors in 3MCompany (MMM), Eastman Kodak (EK), Walt Disney (DIS), and PepsiCo (PEP). The 
shape of the function is consistent with Markowitz utility function that is concave in the neighborhood of wealth below 1 (positive risk 
aversion), convex in the neighborhood of wealth above 1 (negative risk aversion), and has an inflection point at 1 (risk aversion changes 
from positive to negative). Estimated level of risk aversion and a standard error band are shown. 
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Figure 4. Risk Aversion Consistent With Friedman-Savage Utility. 
Risk aversion as a function of wealth for investors in Chevron (CHV), General Electric (GE), General Motors (GM), and Procter and Gamble (PG). 
The shape of the function is consistent with Friedman and Savage utility function that is concave (positive risk aversion), convex (negative 
risk aversion), and then concave again (positive risk aversion). Estimated level of risk aversion and a standard error band are shown. 
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